1,475 research outputs found

    Revisiting Visual Question Answering Baselines

    Full text link
    Visual question answering (VQA) is an interesting learning setting for evaluating the abilities and shortcomings of current systems for image understanding. Many of the recently proposed VQA systems include attention or memory mechanisms designed to support "reasoning". For multiple-choice VQA, nearly all of these systems train a multi-class classifier on image and question features to predict an answer. This paper questions the value of these common practices and develops a simple alternative model based on binary classification. Instead of treating answers as competing choices, our model receives the answer as input and predicts whether or not an image-question-answer triplet is correct. We evaluate our model on the Visual7W Telling and the VQA Real Multiple Choice tasks, and find that even simple versions of our model perform competitively. Our best model achieves state-of-the-art performance on the Visual7W Telling task and compares surprisingly well with the most complex systems proposed for the VQA Real Multiple Choice task. We explore variants of the model and study its transferability between both datasets. We also present an error analysis of our model that suggests a key problem of current VQA systems lies in the lack of visual grounding of concepts that occur in the questions and answers. Overall, our results suggest that the performance of current VQA systems is not significantly better than that of systems designed to exploit dataset biases.Comment: European Conference on Computer Visio

    CanvasGAN: A simple baseline for text to image generation by incrementally patching a canvas

    Full text link
    We propose a new recurrent generative model for generating images from text captions while attending on specific parts of text captions. Our model creates images by incrementally adding patches on a "canvas" while attending on words from text caption at each timestep. Finally, the canvas is passed through an upscaling network to generate images. We also introduce a new method for generating visual-semantic sentence embeddings based on self-attention over text. We compare our model's generated images with those generated Reed et. al.'s model and show that our model is a stronger baseline for text to image generation tasks.Comment: CVC 201

    Neural Networks Compression for Language Modeling

    Full text link
    In this paper, we consider several compression techniques for the language modeling problem based on recurrent neural networks (RNNs). It is known that conventional RNNs, e.g, LSTM-based networks in language modeling, are characterized with either high space complexity or substantial inference time. This problem is especially crucial for mobile applications, in which the constant interaction with the remote server is inappropriate. By using the Penn Treebank (PTB) dataset we compare pruning, quantization, low-rank factorization, tensor train decomposition for LSTM networks in terms of model size and suitability for fast inference.Comment: Keywords: LSTM, RNN, language modeling, low-rank factorization, pruning, quantization. Published by Springer in the LNCS series, 7th International Conference on Pattern Recognition and Machine Intelligence, 201

    Longitudinal detection of radiological abnormalities with time-modulated LSTM

    Full text link
    Convolutional neural networks (CNNs) have been successfully employed in recent years for the detection of radiological abnormalities in medical images such as plain x-rays. To date, most studies use CNNs on individual examinations in isolation and discard previously available clinical information. In this study we set out to explore whether Long-Short-Term-Memory networks (LSTMs) can be used to improve classification performance when modelling the entire sequence of radiographs that may be available for a given patient, including their reports. A limitation of traditional LSTMs, though, is that they implicitly assume equally-spaced observations, whereas the radiological exams are event-based, and therefore irregularly sampled. Using both a simulated dataset and a large-scale chest x-ray dataset, we demonstrate that a simple modification of the LSTM architecture, which explicitly takes into account the time lag between consecutive observations, can boost classification performance. Our empirical results demonstrate improved detection of commonly reported abnormalities on chest x-rays such as cardiomegaly, consolidation, pleural effusion and hiatus hernia.Comment: Submitted to 4th MICCAI Workshop on Deep Learning in Medical Imaging Analysi

    Evolutionary estimation of a Coupled Markov Chain credit risk model

    Full text link
    There exists a range of different models for estimating and simulating credit risk transitions to optimally manage credit risk portfolios and products. In this chapter we present a Coupled Markov Chain approach to model rating transitions and thereby default probabilities of companies. As the likelihood of the model turns out to be a non-convex function of the parameters to be estimated, we apply heuristics to find the ML estimators. To this extent, we outline the model and its likelihood function, and present both a Particle Swarm Optimization algorithm, as well as an Evolutionary Optimization algorithm to maximize the likelihood function. Numerical results are shown which suggest a further application of evolutionary optimization techniques for credit risk management

    How did the discussion go: Discourse act classification in social media conversations

    Full text link
    We propose a novel attention based hierarchical LSTM model to classify discourse act sequences in social media conversations, aimed at mining data from online discussion using textual meanings beyond sentence level. The very uniqueness of the task is the complete categorization of possible pragmatic roles in informal textual discussions, contrary to extraction of question-answers, stance detection or sarcasm identification which are very much role specific tasks. Early attempt was made on a Reddit discussion dataset. We train our model on the same data, and present test results on two different datasets, one from Reddit and one from Facebook. Our proposed model outperformed the previous one in terms of domain independence; without using platform-dependent structural features, our hierarchical LSTM with word relevance attention mechanism achieved F1-scores of 71\% and 66\% respectively to predict discourse roles of comments in Reddit and Facebook discussions. Efficiency of recurrent and convolutional architectures in order to learn discursive representation on the same task has been presented and analyzed, with different word and comment embedding schemes. Our attention mechanism enables us to inquire into relevance ordering of text segments according to their roles in discourse. We present a human annotator experiment to unveil important observations about modeling and data annotation. Equipped with our text-based discourse identification model, we inquire into how heterogeneous non-textual features like location, time, leaning of information etc. play their roles in charaterizing online discussions on Facebook

    Patterns versus Characters in Subword-aware Neural Language Modeling

    Full text link
    Words in some natural languages can have a composite structure. Elements of this structure include the root (that could also be composite), prefixes and suffixes with which various nuances and relations to other words can be expressed. Thus, in order to build a proper word representation one must take into account its internal structure. From a corpus of texts we extract a set of frequent subwords and from the latter set we select patterns, i.e. subwords which encapsulate information on character nn-gram regularities. The selection is made using the pattern-based Conditional Random Field model with l1l_1 regularization. Further, for every word we construct a new sequence over an alphabet of patterns. The new alphabet's symbols confine a local statistical context stronger than the characters, therefore they allow better representations in Rn{\mathbb{R}}^n and are better building blocks for word representation. In the task of subword-aware language modeling, pattern-based models outperform character-based analogues by 2-20 perplexity points. Also, a recurrent neural network in which a word is represented as a sum of embeddings of its patterns is on par with a competitive and significantly more sophisticated character-based convolutional architecture.Comment: 10 page

    TandemNet: Distilling Knowledge from Medical Images Using Diagnostic Reports as Optional Semantic References

    Full text link
    In this paper, we introduce the semantic knowledge of medical images from their diagnostic reports to provide an inspirational network training and an interpretable prediction mechanism with our proposed novel multimodal neural network, namely TandemNet. Inside TandemNet, a language model is used to represent report text, which cooperates with the image model in a tandem scheme. We propose a novel dual-attention model that facilitates high-level interactions between visual and semantic information and effectively distills useful features for prediction. In the testing stage, TandemNet can make accurate image prediction with an optional report text input. It also interprets its prediction by producing attention on the image and text informative feature pieces, and further generating diagnostic report paragraphs. Based on a pathological bladder cancer images and their diagnostic reports (BCIDR) dataset, sufficient experiments demonstrate that our method effectively learns and integrates knowledge from multimodalities and obtains significantly improved performance than comparing baselines.Comment: MICCAI2017 Ora

    Dataset for Automatic Summarization of Russian News

    Full text link
    Automatic text summarization has been studied in a variety of domains and languages. However, this does not hold for the Russian language. To overcome this issue, we present Gazeta, the first dataset for summarization of Russian news. We describe the properties of this dataset and benchmark several extractive and abstractive models. We demonstrate that the dataset is a valid task for methods of text summarization for Russian. Additionally, we prove the pretrained mBART model to be useful for Russian text summarization.Comment: Version 3, accepted to AINL 202

    Broadcasting Convolutional Network for Visual Relational Reasoning

    Full text link
    In this paper, we propose the Broadcasting Convolutional Network (BCN) that extracts key object features from the global field of an entire input image and recognizes their relationship with local features. BCN is a simple network module that collects effective spatial features, embeds location information and broadcasts them to the entire feature maps. We further introduce the Multi-Relational Network (multiRN) that improves the existing Relation Network (RN) by utilizing the BCN module. In pixel-based relation reasoning problems, with the help of BCN, multiRN extends the concept of `pairwise relations' in conventional RNs to `multiwise relations' by relating each object with multiple objects at once. This yields in O(n) complexity for n objects, which is a vast computational gain from RNs that take O(n^2). Through experiments, multiRN has achieved a state-of-the-art performance on CLEVR dataset, which proves the usability of BCN on relation reasoning problems.Comment: Accepted paper at ECCV 2018. 24 page
    • …
    corecore